• Home
  • Android TV Box
  • Unboxing
No Result
View All Result
  • Home
  • Android TV Box
  • Unboxing
No Result
View All Result
Elmanda Yogas P
No Result
View All Result

Home » Konsep Data Mining and Implementasi (Penerapan)

Konsep Data Mining and Implementasi (Penerapan)

elmandayp by elmandayp
June 2, 2010
in Kuliah
0
VIEWS
Share on FacebookShare on Twitter

Pendahuluan

BacaJuga :

Socket Programing

Web Server

Apa Itu Spring Framework

Manusia telah “secara manual” mengekstrak pola dari data selama berabad-abad, tetapi meningkatnya volume data yang di zaman modern telah menyerukan pendekatan yang lebih otomatis. Metode awal untuk mengidentifikasi pola-pola dalam data termasuk Bayes ‘teorema (1700) dan Analisis Regresi (1800). Proliferasi, di mana-mana dan meningkatkan kekuatan teknologi komputer telah meningkat pengumpulan data dan penyimpanan. Seperti kumpulan data telah tumbuh dalam ukuran dan kompleksitas, tangan langsung-analisis data telah semakin telah ditambah dengan tidak langsung, pemrosesan data otomatis. Ini telah dibantu oleh penemuan-penemuan lain dalam ilmu komputer, seperti jaringan saraf, Clustering, Genetic algorithms (1950), Keputusan pohon (1960) dan Dukungan mesin vektor (1980). Diperlukan sebuah metode sebagai penerapan pengumpulan data yang dapat menampung, menganalisis secara akurat data yang bagitu besar, metode tersebut hingga saat ini dikenal sebagai Data Mining.

Data Mining

Data Mining adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data

berupa pengetahuan yang selama ini tidak diketahui secara manual. Patut diingat bahwa kata mining sendiri berarti usaha untuk mendapatkan sedikit barang berharga dari sejumlah besar material dasar. Karena itu DM sebenarnya memiliki akar yang panjang dari bidang ilmu seperti kecerdasan buatan (artificial intelligent), machine learning, statistik dan database. Data mining adalah proses menerapkan metode ini untuk data dengan maksud untuk mengungkap pola-pola tersembunyi. Dengan arti lain Data mining adalah proses untuk penggalian pola-pola dari data. Data mining menjadi alat yang semakin penting untuk mengubah data tersebut menjadi informasi. Hal ini sering digunakan dalam berbagai praktek profil, seperti pemasaran, pengawasan, penipuan deteksi dan penemuan ilmiah. Telah digunakan selama bertahun-tahun oleh bisnis, ilmuwan dan pemerintah untuk menyaring volume data seperti catatan perjalanan penumpang penerbangan, data sensus dan supermarket scanner data untuk menghasilkan laporan riset pasar.

Alasan utama untuk menggunakan data mining adalah untuk membantu dalam analisis koleksi pengamatan perilaku. Data tersebut rentan terhadap collinearity karena diketahui keterkaitan. Fakta yang tak terelakkan data mining adalah bahwa subset/set data yang dianalisis mungkin tidak mewakili seluruh domain, dan karenanya tidak boleh berisi contoh-contoh hubungan kritis tertentu dan perilaku yang ada di bagian lain dari domain . Untuk mengatasi masalah semacam ini, analisis dapat ditambah menggunakan berbasis percobaan dan pendekatan lain, seperti Choice Modelling untuk data yang dihasilkan manusia.

Dalam situasi ini, yang melekat dapat berupa korelasi dikontrol untuk, atau dihapus sama sekali, selama konstruksi desain eksperimental. Beberapa teknik yang sering disebut-sebut dalam literatur Data Mining dalam penerapannya antara lain: clustering, classification, association rule mining, neural network, genetic algorithm dan lain-lain. Yang membedakan persepsi terhadap Data Mining adalah perkembangan teknik-teknik Data Mining untuk aplikasi 1 pada database skala besar. Sebelum populernya Data Mining, teknik-teknik tersebut hanya dapat dipakaiuntuk data skala kecil saja.

Proses Data Mining

Tahap-Tahap Data Mining. Karena Data Mining adalah suatu rangkaian proses, Data Mining dapat

dibagi menjadi beberapa tahap:

1. Pembersihan data (untuk membuang data yang tidak konsisten dan noise)

2. Integrasi data (penggabungan data dari beberapa sumber)

3. Transformasi data (data diubah menjadi bentuk yang sesuai untuk di-mining)

4. Aplikasi teknik Data Mining

5. Evaluasi pola yang ditemukan (untuk menemukan yang menarik/bernilai)

6. Presentasi pengetahuan (dengan teknik visualisasi)

Tahap-tahap tsb. bersifat interaktif di mana pemakai terlibat langsung atau dengan perantaraan knowledge base.

Teknik Data Mining

Berikut beberapa jenis teknik Data Mining yang paling populer dikenal dan digunakan:

1. Association Rule Mining

Association rule mining adalah teknik mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Penting tidaknya suatu aturan assosiatif dapat diketahui dengan dua parameter, support yaitu persentase kombinasi item tsb. dalam database dan confidence yaitu kuatnya hubungan antar item dalam aturan assosiatif. Algoritma yang paling populer dikenal sebagai Apriori dengan paradigma generate and test, yaitu pembuatan kandidat kombinasi item yang mungkin berdasar aturan tertentu lalu diuji apakah kombinasi item tsb memenuhi syarat support minimum. Kombinasi item yang memenuhi syarat tsb. disebut frequent itemset, yang nantinya dipakai untuk membuat aturan-aturan yang memenuhi syarat confidence minimum. Algoritma baru yang lebih efisien bernama FP-Tree.

2. Classification Classification adalah proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model itu sendiri bisa berupa aturan “jika-maka”, berupa decision tree, formula matematis atau neural network. Decision tree adalah salah satu metode classification yang paling populer karena mudah untuk

diinterpretasi oleh manusia. Disini setiap percabangan menyatakan kondisi yang harus dipenuhi dan tiap ujung pohon menyatakan kelas data. Algoritma decision tree yang paling terkenal adalah C4.5, tetapi akhir- akhir ini telah dikembangkan algoritma yang mampu menangani data skala besar yang tidak dapat ditampung di main memory seperti RainForest. Metode-metode classification yang lain adalah Bayesian, neural network, genetic algorithm, fuzzy, case-based reasoning, dan k-nearest neighbor. Proses classification biasanya dibagi menjadi dua fase : learning dan test. Pada fase learning, sebagian data yang telah diketahui kelas datanya diumpankan untuk membentuk model perkiraan. Kemudian pada fase test model yang sudah terbentuk diuji dengan sebagian data lainnya untuk mengetahui akurasi dari model tsb. Bila akurasinya mencukupi model ini dapat dipakai untuk prediksi kelas data yang belum diketahui.

3. Clustering

Berbeda dengan association rule mining dan classification dimana kelas data telah ditentukan sebelumnya, clustering melakukan penge-lompokan data tanpa berdasarkan kelas data tertentu. Bahkan clustering dapat dipakai untuk memberikan label pada kelas data yang belum diketahui itu. Karena itu clustering sering digolongkan sebagai metode unsupervised learning. Prinsip dari clustering adalah memaksimalkan kesamaan antar anggota satu kelas dan meminimumkan kesamaan antar kelas/cluster. Clustering dapat dilakukan pada data yan memiliki beberapa atribut yang dipetakan sebagai ruang multidimensi. Banyak algoritma clustering memerlukan fungsi jarak untuk mengukur kemiripan antar data, diperlukan juga metode untuk normalisasi bermacam atribut yang dimiliki data. Beberapa kategori algoritma clustering yang banyak dikenal adalah metode partisi dimana pemakai harus menentukan jumlah k partisi yang diinginkan lalu setiap data dites untuk dimasukkan pada salah satu partisi, metode lain yang telah lama dikenal adalah metode hierarki yang terbagi dua lagi : bottom-up yang menggabungkan cluster kecil menjadi cluster lebih besar dan top-down yang memecah cluster besar menjadi cluster yang lebih kecil.

Kelemahan 3 metode ini adalah bila bila salah satu penggabungan/pemecahan dilakukan pada tempat yang salah, tidak dapat didapatkan cluster yang optimal. Pendekatan yang banyak diambil adalah menggabungkan metode hierarki dengan metode clustering lainnya seperti yang dilakukan oleh Chameleon. Akhir-akhir ini dikembangkan juga metode berdasar kepadatan data, yaitu jumlah data yang ada di sekitar suatu data yang sudah teridentifikasi dalam suatu cluster. Bila jumlah data dalam jangkauan tertentu lebih besar dari nilai ambang batas, data-data tsb dimasukkan dalam cluster. Kelebihan metode ini adalah bentuk cluster yang lebih fleksibel. Algoritma yang terkenal adalah DBSCAN.

 

Implementasi (Penerapan)

Dalam bidang apasaja data mining dapat diterapkan? Berikut beberapa contoh bidang penerapan data mining:

– Analisa pasar dan manajemen.

Solusi yang dapat diselesaikan dengan data mining, diantaranya: Menembak target pasar, Melihat pola beli pemakai dari waktu ke waktu, Cross-Market analysis, Profil Customer, Identifikasi kebutuhan Customer, Menilai loyalitas Customer, Informasi Summary.

– Analisa Perusahaan dan Manajemen resiko.

Solusi yang dapat diselesaikan dengan data mining, diantaranya: Perencanaan keuangan dan Evaluasi aset, Perencanaan sumber daya (Resource Planning), Persaingan (Competition).

– Telekomunikasi.

Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual.

– Keuangan.

Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry) .

– Asuransi.

Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi .

– Olahraga.

IBM Advanced Scout menggunakan data mining untuk menganalisis statistik permainan NBA (jumlah shots blocked, assists dan fouls) dalam rangka mencapai keunggulan bersaing (competitive advantage) untuk tim New York Knicks dan Miami Heat.

– Astronomi.

Jet Propulsion Laboratory (JPL) di Pasadena, California dan Palomar Observatory berhasil menemukan 22 quasar dengan bantuan data mining. Hal ini merupakan salah satu kesuksesan penerapan data mining di bidang astronomi dan ilmu ruang angkasa.

– Internet Web surf-aid

IBM Surf-Aid menggunakan algoritma data mining untuk mendata akses halaman Web khususnya yang berkaitan dengan pemasaran guna melihat prilaku dan minat customer serta melihat ke- efektif-an pemasaran melalui Web.

Contoh kasus penerapan: Implementasi data mining dengan teknik Clustering untuk melakukan Competitive Intelligence perusahaan.

 

Pembangunan perangkat lunak data mining dengan metode clustering menggunakan algoritma hirarki divisive untuk pengelompokan customer dalam studi kasus ini, fungsi – fungsi yang dipakai adalah fungsi untuk menentukan titik-titik pusat yang berguna sebagai pusat-pusat kelompok customer.

Previous Post

Web Server

Next Post

Socket Programing

Related Posts

Kuliah

Socket Programing

June 21, 2010
3
Kuliah

Web Server

May 18, 2010
0
Kuliah

Apa Itu Spring Framework

March 11, 2010
0
Next Post

Socket Programing

Leave Comment
Cloud Hosting Indonesia
ADVERTISEMENT
ASUS Luncurkan Zenfone 9 di Indonesia, Hadirkan Performa Flagship pada Desain Ultra-Compact

ASUS Luncurkan Zenfone 9 di Indonesia, Hadirkan Performa Flagship pada Desain Ultra-Compact

November 18, 2022
Asus Zenfone 9, Si Mungil dengan Kamera Gimbal, Auto Bebas Ghosting

Asus Zenfone 9, Si Mungil dengan Kamera Gimbal, Auto Bebas Ghosting

November 17, 2022
Review Singkat Android TV Box Akari AX810

Review Singkat Android TV Box Akari AX810

October 31, 2022
  • Privacy Policy
  • DMCA
  • Disclaimer

© 2021 Developed By eyepemedia.

No Result
View All Result
  • Bio
  • Disclaimer
  • DMCA
  • Home
  • Privacy Policy

© 2021 Developed By eyepemedia.

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version

Hai teman-teman,

jangan lupa subscribe Channel Youtube saya.
Subscribe itu GRATIS tidak dipungut bayaran,

mari dukung saya dengan klik tombol subscribe.